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Abstract
An atomistic method based on the diffraction pseudopotential model is established, for
investigating the surface roughness (SR) effect in ultrathin body double-gate
metal–oxide–semiconductor field effect transistors. The scattering of electrons due to atoms and
vacancies responsible for roughness results from a three-dimensional effective field, and its
planar components provide essentially roughness scattering, while a vertical effective field is
the source of scattering in the method developed in which roughness is treated as a
semiclassical barrier fluctuation. The present model involves a stronger effect on mobility than
the previously developed one and results in an excellent fit, as regards mobility, to the reported
experimental data. The extracted SR parameter also matches the observed value.

(Some figures in this article are in colour only in the electronic version)

Ultrathin body (UTB) metal–oxide–semiconductor field effect
transistors (MOSFET) have been considered important for
controlling short channel effects [1]. And surface roughness
(SR) at the Si–SiO2 interface in the MOSFET is considered
to be inherent to the space charge layer and to be one of the
dominant scattering mechanisms, especially at high electron
concentrations, in present-day MOSFET [2, 3]. Furthermore,
it was demonstrated that an atomic level thickness fluctuation
has a significant impact on the threshold voltage, gate channel
capacitance, and carrier mobility in a UTB MOSFET when the
body thickness is below 4 nm [4].

It is generally believed that the exact properties of the
SR have not been established very well [5]. The early
semiclassical model of the SR [6–8] was based on the
assumption that continuous fluctuation of the barrier potential
provides the SR scattering mechanism, and it was extended to
investigate the role of the SR in transport in UTB MOSFET
recently [9, 10]. However the SR parameter extracted from
this model does not match the experimental finding very
well [4, 10] (see details in the text). In this case, it is reasonable
to believe that the approximation of the continuous barrier
model is no longer adequate when MOSFET structures have
entered into the nanoscale regime. And it is necessary to
establish a new and more accurate microscopic model of the

SR which goes beyond the semiclassical one. In this paper, we
use a pseudopotential (PS) to describe the interaction of the SR
scattering centers (SRSCs) and establish a largely analytical
model at a microscopic level. Although an attempt to treat
the SR at the atomic level was made on the basis of ab initio
calculation [11], it is still important and valuable to explore
this more deeply. Furthermore, our model provides definite SR
parameters which can be examined in experiments. It is shown
that the mobility derived and the SR parameter extracted from
the present model fit the experimental data very well, which is
much better than the semiclassical model outcome. It should
be noted that the present model is essentially different to the
latter, because the effective electric field (EEF) of SRSCs in
the latter is a local, planar-coordinate-dependent vertical field,
while it is a 3D, nonlocal EEF in our model.

Figure 1(a) shows a schematic diagram for Si(100) film.
The crystal structure is described in terms of a 2D lattice
attached with basis atoms [12], where the 2D lattice is defined
on the top surface (TS), and 2D Wigner–Seitz (WS) cells
(figure 1(b)) are given by �ρi = (a0/2)(ixex + i yey), where
a0 = 5.4307 Å is the crystal constant, ix (y) are integers. The
zero point in the z direction is set at the bottom surface (BS)
while z = L for the TS. All the atoms between the BS and
the TS form a perfect film (PF). Additional atoms (aa) and
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Figure 1. A schematic Si(100) thin film and 2D Wigner–Seitz cell
for the top surface are shown in (a) and (b) respectively. Shaded
circles in (b) are Si atoms, a1 (2) and v1 (2) are positions available for
the first (second) aa and the first (second) va. v2 is below a2.

vacancies (va) introduce SRSCs and the sites available for
them symmetrically around the central atom of the WS cell
(figure 1(b)).

It is assumed that SR only occurs around the TS. It will
be straightforward to extend it to the BS. The single-particle
Hamiltonian is given in terms of the diffraction PS model [13]
as

H = T +
∑

i�ξi

U PS(r − �ρi − �ξi )

+
∑

j �ξ j SR

U PS(r − �ρ j − Lez − �ξ jSR) + VB( �ρ, z), (1)

where the first term is the kinetic energy, the second term is
the potential for all atoms in the PF except the atoms on the
TS, and �ξi are the coordinates of basis atoms (relative to the
lattice point) whose x and y components are on the i th 2D
WS. The third term in (1) accounts for the potentials of SRSCs,
i, j run over all WSs, �ξ jSR are relative coordinates of SRSCs
referenced to r j = �ρ j+Lez (when �ξ jSR = 0, this term gives the
potential of atoms on the TS; otherwise it gives the potentials
of the aa or the va). Furthermore, the fourth term in (1) is from
the barrier potential in which the barrier SR is described by
means of the fluctuation of the barrier boundaries [8]. It can
be expanded around the TS, the zero-order V0 is for the PF and
the first-order V1 accounts for the barrier roughness (BR) [8].

Expanding the third term around the TS, i.e. �ρ − �ρ j and
z − L, we get

U PS(r−r j −�ξ jSR) = U PS(r−r j)−[∇U PS(r−r j)] · �ξ jSR, (2)

where �ξ jSR = �ξ jSR‖ + �ξ jSRz , �ξ jSR‖ and �ξ jSRz are components
in xy plane and z direction. The summation over j in the
first term in equation (2) gives the PS of the atoms on the
TS, which is combined with the second term in equation (1)
to give the total PS of the PF, i.e. V PS

PF = ∑
i�ξi

U PS(r −
�ρi − �ξi ), including all atoms in the PF. The second term in
equation (2) is the effective field caused by SRSCs (briefly:
atomic roughness (AR)).

According to the diffraction model [13], we regard H0 =
T + V0 as the unperturbed system which describes the free

electrons in a quantum well with perfect boundaries. Its
eigenfunctions can be written as

φnk(r) = 1

2i

√
2

SL
(exp(iKn+ · r) − exp(iKn− · r)), (3)

where S = N S0 is the area of the UTB surface, N is the
total number of 2D WSs, S0 = a2

0/2, Kn± = k ± knzez is
a 3D vector in the reciprocal space, k is a 2D wavevector,
knz = nπ/L, n = 1, 2, . . ., and r is a 3D vector in real space.
The Hamiltonian for the PF is HPF = H0 + V PS

PF . Thus the
perturbation Hamiltonian of the SR will be H SR

pert = H − HPF.
The strategy of calculation of the matrix elements (ME) of the
SR is calculating the ME of H and HPF by using the diffraction
model.

We first calculate the transition probability for HPF arising
from the potential V PS

PF [13]. A structure factor
∑

i ei�k·�ρi is
present in the ME, which is zero if �k is not on a 2D lattice
formed by reciprocal primitive vectors. Otherwise, it equals
1. However, �k being on a 2D lattice is just equivalent to the
Bragg diffraction condition, which gives rise to the standing
waves in the crystal and does not contribute to any scattering
which may cause resistance to the motion of electrons. This
result also manifests itself in the ME of H in which V PS

PF is
present as well. Therefore, the scattering rates caused by SR
are contributed from two sources: one is from the AR, the
other is from the effect of the BR (see above). The latter is
considered as the only source of SR in the method developed
previously [2, 3, 8, 9]. The former term gives an atomistic
view and a new scattering mechanism for SR which we shall
investigate in detail. Combination of the two sources gives the
effect of H SR

pert, and we use V PS
SR to express the AR’s contribution

(see equations (4), (5) and (6)).
Transition matrix. The transition matrix caused by AR in terms
of equation (3) is

〈n′k′|V PS
SR |nk〉 = − fV

∑

j �ξ j g

δg�ξ j · Eavg(Qg)e
−iQg·r j , (4)

where fV = f0

N , f0 = �atom
2S0 L , �atom is the atomic volume

of Si atoms, g = 1, 2, 3, and 4, δ1 (4) = 1, δ2 (3) =
−1, Q1 (2) = K′

n′+ − Kn+ (n−), Q3 (4) = K′
n′− − Kn+ (n−),

and Eavg(Q) = (1/�atom)
∫

exp(−iQ · r)∇U PS(r)dr is an
effective field. Choosing one term in the summation in
equation (4), i.e. g = 1 and ξ j z Eavg,z , its ME is 〈|V PS|〉g=1,z =
− fV Eavg,z(Q1) exp(−iQ1z L)

∑
ix ,iy

exp(−i(Q1xρi x + Q1yρiy

)) ξ̄z(ix , i y), where ix , i y cover all WSs, and ξ̄z(ix, i y) =∑
ξiz

ξz(ix , i y) is a random number and the total variation
of all SRSCs on the (ix, i y)th WS. For WSs with aa
(va) on it, ξ̄z > 0 (<0). 〈ξ̄z〉 = 0 can be
obtained. Ix (y) is the total number of summation variables
ix (y) and N = Ix Iy ; we have ξ̄z(Q1x , Q1y) =
(1/N)

∑
ix ,iy∈all WSs ξ̄z(ix, i y) exp(−i(Q1xρi x + Q1yρiy)) is

the Fourier transformation of ξ̄z(ix , i y) defined on discrete
primitive vectors [5, 12].

For other components, we still have 〈ξ̄x 〉 = 〈ξ̄y〉 = 0. The
same calculation can also be applied to these two. Thus the
transition matrix is

〈n′k′|V PS
SR |nk〉 = − f0

∑

g

δg
�̄E(Qg) · �̄ξ(Qgx , Qgy) (5)
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Figure 2. The variations of the scattering rate are shown with q in (a), with q for different d in (b), with q for different �‖ in (c), and with
number of subbands n in (d). The effective masses of Si are m t = 0.19m0, ml = 0.92m0, where m0 is the bare mass of electrons, and the
inversion charge density is set at NS = 1 × 1012 cm−2. The other parameters are as follows. (a) L = a0. (b) d = 1.3, 1.4, 1.5 and 1.6 nm
correspond to the solid, dashed, dash–dotted, and dash–dot–dotted lines, for 1/τ1,AR and 1/τ S

1,BR. L = a0. (c) L = 1.5a0. (d) L = 2a0,
q = 5 × 106 cm−1.

where �̄E(Qg) = e−iQgz L Eavg(Qg). Equation (5) accounts for
the AR contribution. We assume that the coupling between AR
and BR is weak; therefore the transition probability will be

|〈n′k′|H PS
pert|nk〉|2 = |〈n′k′|V PS

SR |nk〉|2 + |〈|V1|〉|2, (6)

where 〈|V1|〉 is the transition matrix of V1 for the BR case.
Relaxation time and mobility. We can derive the relaxation
time and mobility in 2D under the influence of SR by extending
the 3D treatment of [14]. We shall consider the stationary and
homogeneous system under the elastic (k = k ′) and relaxation
time approximations.

When the intersubband scattering is negligible, the
relaxation time can be derived [3] as

1

τn
= 2π

h̄

∑

k′
|〈nk′|H PS

pert|nk〉|2(1 − cos θ)δ(E(k′) − E(k)),

(7)
where E = En + E(k) is the total energy for an electron in a
subband n with a 2D wavevector k, and the individual ME are
from equation (6).

The autocovariance function (ACVF) [5] is defined
to characterize the SR behavior as Cx (y,z)(i ′

x, i ′
y) =

〈ξ̄x (y,z)(ix, i y)ξ̄x (y,z)(ix − i ′
x , i y − i ′

y)〉 and the power spectrum
ζ(Qx , Qy) of this ACVF is just its Fourier transformation
according to the Wiener–Kitchine theorem. It should be
pointed out that the power spectrum in our model is actually
a 3D function, which is different from the conventional 1D
function in the BR case [3]. The power spectrum is usually
assumed to be of the Gaussian [8, 15], exponential [16],
or intermediate type [9, 17]. Because the averaged relative

coordinates ξ̄x (y,z) are all zero, we may regard the three
components as independent of each other. Thus, we have

|〈n′k′|V PS
SR |nk〉|2 = f 2

0

∑

gg′
δgδg′ [q2

xζx + (Qgz Qg′z)ζz + q2
yζy]

× [U PS(Qg)U
PS(Qg′)]eiL�Q, (8)

where ζx (y,z) all depend on qx and qy , U PS(Q) is the atomic PS
in reciprocal space, �Q = Qgz − Qg′z . In (8), the second term
is calculated to be zero.

In numerical calculation, a model PS for Si [18] is
used. The power spectrum is assumed to be ζx(Qx , Qy) =
ζy(Qx , Qy) = π�2

‖d2 exp(−(Q2
x +Q2

y)d
2/4), where �‖ is the

rms value of the roughness function, d is the autocovariance
length. The potential of the barrier changes abruptly and
discontinuously at the boundaries, which leads to a delta
function there. Thus a zero expectation for the transition
probability is derived for the BR term in our model. The
roughness effect is in fact included by the AR term here. So in
the following and all graphs, we refer AR to our model and BR
to the previously developed methods [3, 8, 15]. The formulas
for the scattering rate (SCR), transition matrix and mobility in
the BR case are similar to those in [15]; the isotropic effective
mass (EM) of GaAs is replaced by the longitudinal (transverse)
EMs of Si, ε(q) is the screening dielectric function from [8],
where q = |k′−k|. We use 1/τn,B R to express the SCR without
screening.

In figure 2(a), we compare the SCR for AR and BR
cases with and without screening. Without screening, 1/τ1,BR

decreases monotonically with increasing q , and it has a finite
value at q = 0 (long wavelength limit (LWL)). When the

3
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screening is included, the SCR 1/τ S
1,BR is dramatically changed

at the LWL; it tends to zero when q → 0 [19]. In this limit,
the scattering from the barrier fluctuation is screened more
profoundly. 1/τ1,AR shows the same tendency at the LWL and
it also tends to zero when q approaches larger values (short
wavelength limit (SWL)). In the SWL, the AR case and BR
case tend to be the same. Thus there are electrons with some
moderate wavevectors that are efficiently scattered under the
influence of SR for a given SR distribution.

The screening is crucial to the BR model. The first
introduction of the screening effect in the conventional SR
model is in [7]. However we note that the screening dielectric
function was introduced into the expression without rigorous
derivation [7, 8], simply by using the screening dielectric
function which was derived for a Coulomb field caused by
the charged impurities in the barrier (outside of the electron
gas) [20]. The Coulomb potential of the charged impurity is
a long range potential, while the barrier fluctuation induces a
local EEF which only exists in a thin sheet of the fluctuation
region whose thickness is determined by �‖ which is usually
several Å [8, 17, 19]. This is comparable to the estimation
of a typical screening length in Si of about 5.5 Å in [20].
Strictly speaking, it is necessary to give a detailed microscopic
derivation for the screening effect in this kind of field.
However, we understand this issue as indicating that the
dielectric function can always be introduced into the formula
at a phenomenological level.

In the scheme of our model, a key point is introducing
an empirical PS to model the scattering of electrons, and
the validity of the model resides in the empirical PS
method (EPM). In the EPM, the total screened potential
is approximated by a superposition of the full screened
atomic PS which is the PS that we used [21]. And this
decomposition process can always be operated in a local
density approximation (LDA) sense [22]. This screened atomic
PS can be used to reproduce the experimental data [18] and
ab initio results for Si film [23] very well. Therefore, the
behaviors of the scattering rate derived from our model are
similar to those found from the conventional method including
the screening effect (see the figure 2(a)). It is worth pointing
out that the planar components of this field in our model induce
roughness scattering directly, which is different to the case for
the method developed where a vertical field is the source of
scattering and manifests itself by modifying the energy levels,
and so on [9].

The local fluctuation δE(r) in the quantization energy
caused by the fluctuation of the thickness of the film works
as the scattering potential for the 2D electron motion in the
conventional method [15, 24]. However, the scattering strength
at each fluctuation site is wavevector independent; it can be
dependent on q only after including the screening effect. In the
present model, the PS generated by the SRSCs works as the
scattering potential. The thickness dependence enters not only
into a simple factor as (�atom

2S0 L )2 but also into the PS. However
it will be shown in the following that this model can fit the
experimental data very well.

In figures 2(b) and (c), the SCR against q at different
d and �‖ are shown. The position of the peak for 1/τ1,AR

Figure 3. The thickness dependence of the mobility is shown. Solid,
dashed and dotted lines for AR and BR cases correspond to
d = 1.5 nm, d = 1.6 nm and d = 1.7 nm respectively. �‖ = 1a0,
n = 1, q = 5 × 106 cm−1. Circular dots show the data from
experiment [4].

moves to smaller q with larger d in figure 2(b). Because d
characterizes the mean distance between the rough ‘bumps’
along the surface, larger d means less dramatic roughness and
only longer waves can be effectively scattered between the
‘bumps’, while the peak of the SCR for 1/τ S

1,BR is enhanced
with larger d and its position moves to small q , slightly, which
is somewhat different from the AR case. In figure 2(c), the
magnitude of 1/τ1,AR is greatly enhanced with increasing �‖,
which characterizes the degree of roughness. Thus it can be
understood as indicating that more transitions are induced by
more SR. The variation of 1/τn,AR with the occupied subband
index n is shown in figure 2(d). It can be observed that the SCR
first increases with n until n = 7, and then it drops slightly to
an asymptotic value at larger n. This indicates that SR becomes
more dominant at higher charge density [2].

In figure 3, the variation of the mobility with the thickness
of the Si film is shown. We set the same d and same �‖ for the
AR and BR cases to compare their contributions to the mobility
at the same roughness level. It can be observed that the BR case
gives weaker scattering, and the mobility in the AR case with
d = 1.7 nm matches the values from experiment [4] very well
(to compare with experiment, four-atomic-layer roughness is
set, as estimated in experiments, which gives �‖ = a0), while
the lines for the BR case cannot fit the experimental data well
under the same parameters. Further investigations show (not
indicated in figure) that there is no good parameter pair (d,�‖)
for the BR case when �‖ = a0 is kept unaltered. However,
one has the freedom to tune this parameter pair in a range. For
example, (d = 3.84 nm, �‖ = 12.17 Å) for the BR case gives
a fair fit, but the value of �‖ is too large and not consistent with
the experimental value, while the parameters for the AR case
match experimental data and are therefore more reasonable.
Additional detailed experimental data for the SR parameters
are necessary to give an absolute comparison between these
two models. Another characteristic is that the lines for the AR
and BR cases are almost exactly parallel to each other, which
indicates the same order thickness dependence of the mobility.
The difference is that the same roughness configuration leads
to stronger scattering in the AR case and weaker scattering in
the BR case. Our model clearly gives a better result.
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In summary, we have established a microscopic model
for SR in the UTB MOSFET based on a diffraction
pseudopotential method. The results from the present model
are compared to those from the previously developed method
and experiment. A very good consistency as regards mobility
with experiment strongly supports the new model.
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